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Abstract We present a general Bayesian hierarchical framework for conducting nonstationary frequency
analysis of multiple hydrologic variables. In this, annual maxima from each variable are assumed to follow a
generalized extreme value (GEV) distribution in which the location parameter is allowed to vary in time. A
Gaussian elliptical copula is used to model the joint distribution of all variables. We demonstrate the utility
of this framework with a joint frequency analysis model of annual peak snow water equivalent (SWE),
annual peak flow, and annual peak reservoir elevation at Taylor Park dam in Colorado, USA. Indices of large-
scale climate drivers—El Ni~no Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic
Multidecadal Oscillation (AMO) are used as covariates to model temporal nonstationarity. The Bayesian
framework provides the posterior distribution of the model parameters and consequently the return levels.
Results show that performing a multivariate joint frequency analysis reduces the uncertainty in return level
estimates and better captures multivariate dependence compared to an independent model.

Plain Language Summary In this study, we develop a method for determining the probability of
occurrence of rare hydrologic events (e.g., floods). Utilizing modern statistical methods, we are able to esti-
mate occurrence probabilities for multiple hydrologic variables simultaneously while incorporating climate
information that changes in time. We apply this technique to estimate occurrence probabilities for stream-
flow, reservoir elevation, and snow levels for the Taylor Park reservoir in Colorado, USA. This method pro-
vides several benefits over traditional methods including reduction of uncertainty and a flexible model
structure which allows for the incorporation of climate information.

1. Introduction

Hydrologic frequency analysis estimates occurrence probabilities of rare hydrologic events by fitting a prob-
ability distribution to observed extremes. Frequency analysis is used regularly in the design of hydrologic
structures and in risk assessments, such as bridges, dams, power facilities, and floodplain and storm water
management (Alila & Mtiraoui, 2002; Bureau of Reclamation, 2003; Kumar et al., 2003). For example, during
the late 1990s, the Bureau of Reclamation, which maintains over 300 dams located across 17 western states
(Bureau of Reclamation, 2015), began transitioning to a risk-based approach to assess the safety of dams
and prioritize expenditures. Hydrologic frequency analysis provides the necessary probabilistic information
to conduct such dam safety evaluations and risk analyses (Bureau of Reclamation, 2003).

In the simplest form, frequency analysis can be conducted on a single variable at a single location. Quantiles
from a fitted probability distribution give the magnitude of an event associated with a specified nonexcee-
dance probability. In the case of annual maximum values, the return level (aka magnitude) associated with
a T-year return period is the ð121=TÞth quantile of the distribution. A number of probability distributions
are available to describe the behavior of extremes, including the generalized extreme value (GEV) distribu-
tion and the generalized pareto distribution (GPD), both of which are consistent with extreme value theory
(EVT; Coles, 2001).

Given a daily time series of some variable, if the maximum value is selected from a predetermined block
of time (annually, say), then the resulting time series will follow a three parameter GEV distribution
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(Westra et al., 2013), which can describe a wide range of tail behaviors. This approach is called the block
maxima method. In the simplest form of block maxima frequency analysis, a stationary GEV distribution is
fit to a data set at a single location, and return levels are computed for a range of return periods. A station-
ary GEV distribution is one in which the parameters of that distribution are constant in time.

Although the GEV distribution is flexible for modeling flood extremes, the Log Pearson type III (a Gamma
distribution fitted to logarithm of the data) is widely used (Bob�ee, 1975; Bobee & Robitaille, 1977) and is the
legal standard in the United States. In this study, however, we focus our attention on the generalized
extreme value (GEV) distribution due to its ability to capture a wide range of tail behaviors and its use in
previous hydrologic studies (Davison et al., 2012; Ghosh & Mallick, 2011; Katz, 2010; Katz et al., 2002; Najafi
& Moradkhani, 2014; Renard, 2011; Sang & Gelfand, 2009).

There is growing evidence of the effects of climate change on hydroclimate extremes (Katz, 2010; Milly
et al., 2008), highlighting the importance of nonstationary analyses. Under the assumption of stationarity,
parameters of the GEV distribution are assumed to be constant in time, and consequently return levels are
also constant in time. Nonstationary frequency analysis incorporates time varying covariates into the esti-
mates of GEV parameters (Aryal et al., 2009; Cheng et al., 2014; Machado et al., 2015; Ouarda & El Adlouni,
2011; Tan & Gan, 2015). In a simple nonstationary case, a linear time trend can be incorporated in the GEV
parameters (Cheng et al., 2014). Effects of large-scale climate can also be incorporated by including climate
covariates such as the El Ni~no Southern Oscillation (ENSO) and the Pacific Decadal oscillation (PDO; Renard
& Lall, 2014).

Bayesian approaches to fitting GEV models provide several benefits beyond maximum likelihood estimation
(MLE) methods. Frequency analyses are typically data limited, and MLE methods may diverge in these situa-
tions. In a Bayesian setting, through the use of priors, expert knowledge can be incorporated and model con-
vergence can be improved (AghaKouchak et al., 2013). Priors represent assumed distributions assigned to
each parameter that describes a given probability distribution. Finally, uncertainty is propagated naturally in a
Bayesian model without the need for bootstrapping or other ad hoc uncertainty estimation methods (Cooley
et al., 2007). Inability to converge or computational demands may restrict the use of these methods.

Regional frequency analysis (RFA) is a well-known procedure for incorporating observations at multiple
locations in a homogeneous region where all the data are assumed to follow the same probability distribu-
tion (Bradley, 1998; Hosking & Wallis, 1993). By including observations from multiple locations, RFA provides
two main benefits over single-site models: (1) frequency estimates at ungauged locations and (2) improved
estimates of distribution parameters at all the locations. Recent improvements to regional frequency analy-
sis using a Bayesian hierarchical approach allow for estimation of streamflow quantiles at ungaged sites
(Chebana et al., 2014; Lima et al., 2015; Yan & Moradkhani, 2014), precipitation quantiles (Bracken et al.,
2016; Renard, 2011), all with attendant uncertainties.

Multivariate frequency analysis improves upon regional frequency analysis by explicitly capturing the
dependence between multiple hydrologic variables such as flow at two gages on a network, or two varia-
bles measured at the same location, say peak flow and volume. Dependence is typically captured by speci-
fying a joint distribution for two or more variables. Favre et al. (2004) used a variety of copulas to capture
the joint distribution of peak flows at two locations on a river network. Chebana and Ouarda (2011) specify
a joint distribution for the quantiles of peak flow and volume using a copula. Yue and Rasmussen (2002),
Kao and Govindaraju (2007), and Vandenberghe et al. (2011) conduct bivariate frequency analysis of rainfall
and streamflow extremes using copulas. Another form of multivariate frequency analysis is the field of spa-
tial extremes modeling (Bracken et al., 2016; Cooley et al., 2007).

Bayesian approaches have been proposed to conduct nonstationary frequency analysis. El Adlouni and
Ouarda (2009) and Ouarda and El Adlouni (2011) conduct simultaneous model selection and parameter esti-
mation of a nonstationary GEV model using a birth-death Monte Carlo Markov chain (MCMC) procedure
and reversible jump MCMC, respectively. Both studies apply a Bayesian hierarchical modeling approach to
model time varying parameters of the GEV distribution as a function of covariates and apply them to model
extreme precipitation in California. The parameter estimation algorithm is different between the two.
Steinschneider and Lall (2015) propose nonstationary regional frequency analysis conditioned on tropical
moisture exports. O’Connell et al. (2002) conduct Bayesian flood frequency analysis which incorporates
paleohydologic data and Renard (2011) proposes a fully Bayesian approach to regional frequency analysis.
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Multivariate frequency analysis using time varying copulas has been proposed to model nonstationarity.
Jiang et al. (2015) apply a time varying copula with time and reservoir index as covariates to model flows at
two locations on the Hanjiang River in China. Sarhadi et al. (2016a) proposed a Bayesian, dynamic condi-
tional copula to model nonstationarity in multivariate drought attributes with discrete and continuous varia-
bles. They used this approach to propose a dynamic risk estimation framework for hydroclimate extremes
under climate change (Sarhadi et al., 2016b). Kwon and Lall (2016) and Kwon et al. (2016) used copulas with
a time varying model for distribution parameters of drought severity and duration over California and also
applied them to paleo data to identify unprecedented nature of the recent drought from the joint return
periods. Bender et al. (2014) employed time varying copulas with time varying extreme value distribution
parameters to model flood peak and flood volume on the Rhine River.

Despite a large body of literature surrounding the topics of multivariate and nonstationary frequency analy-
sis, a comprehensive Bayesian framework for conducting this analysis has yet to be proposed, which moti-
vates this study. Here we develop such a framework using a Bayesian hierarchical approach. More
specifically, this study brings together elements of several of the past studies, including the use of copulas,
GEV marginal distributions, and nonstationary GEV parameters into a unified multivariate Bayesian frame-
work. We demonstrate this framework with a joint frequency analysis model of annual peak snow water
equivalent (SWE), annual peak flow, and annual peak reservoir elevation at Taylor Park dam in Colorado,
USA. Futhermore, we compare results from the joint frequency analysis with results from more common
frequency estimation techniques. Section 2 describes the framework in general. The application set up for
Taylor Park reservoir, Colorado, USA is then described followed by the specific form of the model and fitting
method in section 3. Section 4 describes the results; conclusions and discussion of results are presented in
section 5.

2. Proposed Framework

The proposed multivariate nonstationary frequency analysis framework has three broad components—(i)
the model structure, (ii) computation of the likelihood function and specification of priors, and (iii) estima-
tion of nonstationary return levels.

2.1. General Model Structure
In general, we wish to conduct a joint frequency analysis of n variables, v1; . . . ; vn observed over m years.
For the model to apply, each variable must be an annual or seasonal maxima time series such that each
variable follows a GEV distribution. The proposed general model structure for n variables is

ðv1ðtÞ; . . . ; vnðtÞÞ � CgðR; flðtÞ; rðtÞ; nðtÞgÞ (1)
viðtÞ � GEVðliðtÞ; riðtÞ; niðtÞÞ; i51; . . . ; n (2)

liðtÞ5gliðxiðtÞT ; lðtÞ; rðtÞ; nðtÞÞ; i51; . . . ; n (3)

riðtÞ5griðxiðtÞT ; lðtÞ; rðtÞ; nðtÞÞ; i51; . . . ; n (4)

niðtÞ5gniðxiðtÞT ; lðtÞ; rðtÞ; nðtÞÞ; i51; . . . ; n (5)

where Cg is an n-dimensional Gaussian elliptical copula with dependence matrix R, liðtÞ; riðtÞ and niðtÞ are
the GEV parameters (location, scale, and shape) for variable i at time t, lðtÞ5½liðtÞ�ni51; rðtÞ5½riðtÞ�ni51;

nðtÞ5½niðtÞ�ni51. The functions glið�Þ; grið�Þ, and gnið�Þ are (potentially nonlinear) functions of covariates xi

ðtÞT and parameters of other variables. These functions can be used to represent nonlinear dependence
relationships between variables. In most cases, the g�ð�Þ functions will be linear functions of covariates
unless some specific nonlinear dependence structure is required.

The copula dependence matrix, R, is a symmetric positive definite matrix capturing the strength of depen-
dence between each pairwise variable. The i, jth element of R measures the dependence between variables
i and j and can take values between 21 and 1. By definition, the dependence between a variable and itself
is unity so the diagonal elements of R are 1’s
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Note that since R is symmetric, there are nðn21Þ=2 dependence parameters to fit (values in the lower or
upper triangle of R). For a model with n variables and p covariates for each variable, this framework requires
nðp13Þ1nðn21Þ=2 parameters to be estimated. The Gaussian copula only assumes linear correlation after
quantile transformation of the marginals with the inverse normal CDF. This does not impose a linear correla-
tion structure on the marginal distributions, and in fact nonlinear dependence between variables can be
captured at the data level.

A Gaussian elliptical copula is a specification for a multivariate distribution with predefined marginals
(Renard & Lang, 2007). Because of their ability to represent any marginal distribution, elliptical copulas have
become a popular practical tool for modeling multivariate extremes (Ghosh & Mallick, 2011; Renard, 2011;
Renard & Lang, 2007; Sang & Gelfand, 2010).

Let VðtÞ5ðV1ðtÞ; . . . ; VnðtÞÞ be a random vector of hydrologic variables at time t and let vðtÞ5ðv1ðtÞ; . . . ; vnðtÞÞ
be a vector of the corresponding realizations. The Gaussian copula constructs the joint cumulative distribution
function (cdf) of VðtÞ as

FCðvðtÞÞ5URðuðtÞÞ (7)

where URð�Þ is the joint cdf of an n-dimensional multivariate normal distribution with covariance matrix R,
uðtÞ5ðu1ðtÞ; . . . ; unðtÞÞ; uiðtÞ5/21ðFit½viðtÞ�Þ; /21 is the inverse cdf (quantile function) of the standard nor-
mal distribution, and Fitð�Þ is the marginal GEV cdf of variable i at time t. The corresponding joint pdf is

fCðvðtÞÞ5

Yn

i51

fi ½viðtÞ�

Yn

i51

w½uiðtÞ�
WRðuðtÞÞ (8)

where fitð�Þ is the marginal GEV pdf for variable i at time t, wð�Þ is the standard normal pdf, and WRð�Þ is the
joint pdf of an n-dimensional multivariate normal distribution.

2.2. Likelihood and Priors
Let y5½y1; . . . ; yn� be a matrix of observations where yi5½yiðtÞ�Tt51 is a vector of observations at one site
and yðtÞ5½yiðtÞ�ni51 be a vector of all variables at time t. Let xi5½xiðtÞ�Tt51 be a matrix of covariates for
variable i, X5½x1; . . . ; xn� be a matrix of all covariates and let h be a vector of latent variable parameters for
the g�ð�Þ functions. By Bayes’ rule the posterior is

pðR; hjy;XÞ / pðy;XjhÞpðR; hÞ (9)

where the first term on the right-hand side is the copula likelihood which assuming temporal independence
can be written

pðR; hjy;XÞ5
Ym

t51

pðyðtÞ;XjR; hÞ (10)

where pðR; hjy;XÞ is given by the likelihood in equation (8).

The marginal GEV likelihood, where temporal dependence is only considered for the location parameter, is

fiðyiðtÞjliðtÞ; ri; niÞ5
1
ri

b21=ni 21
i exp 2b21=ni

i

� �
(11)

where
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bi511ni
yiðtÞ2liðtÞ

ri

� �
: (12)

In practice, the logarithm of the posterior is computed to prevent numerical underflow. In this case, the log
likelihood is

log pðR; hjy;XÞ5log
Yn

i51

pðyðtÞ; xjR; b; r; nÞ (13)

5
Xn

i51

log fi ½yi�2
Xn

i51

log w½ui�1log WRðu1; . . . ; unÞ (14)

where

Xn

i51

log fi½yi �52
Xn

i51

log ðriÞ1ð111=niÞlog ðbiÞ1b21=ni
i

h i
(15)

and

bi511niðyi2liÞ=ri (16)

The term pðR; bl; r; nÞ from equation (9) contains prior information. Uninformative priors can be used for
most parameters, except for the GEV shape parameters. Informative priors may be necessary to restrict
GEV shape parameters to reasonable ranges for particular variables. For example, for precipitation, the
shape parameter is usually less the 0.5 and positive so we could apply pðnÞ � Nð0; 0:3Þ (Renard, 2011) or
the so-called ‘‘geophysical prior’’ (a shifted beta distribution; Martins & Stedinger, 2010). Priors such as
these can help with model convergence and identifiability (AghaKouchak et al., 2013; Renard & Lang,
2007).

2.3. Nonstationary Return Levels
Read and Vogel (2015) suggest it is important to be clear when discussing nonstationary return levels
and return periods as there are several definitions (AghaKouchak et al., 2013; Cheng et al., 2014; Salas &
Obeysekera, 2014). The return level for a stationary GEV distribution is defined as the p5ð121=TÞth
quantile

qp5l1
r
n
½ð2log pÞ2n

21� (17)

In a nonstationary setting when the GEV parameters may be time varying, the return level can be computed
in each year, which is known as the effective return level (Cheng et al., 2014)

qpðtÞ5lðtÞ1 rðtÞ
nðtÞ ½ð2log pÞ2nðtÞ

21� (18)

In the case of nonstationary GEV parameters, a stationary return level can be computed based on quantiles
of the nonstationary parameters

~qp 5~l1~r~n½ð2log pÞ2~n
21� (19)

where

~l5Qkðlðt1Þ; . . . ; lðtmÞÞ (20)

~r5Qkðrðt1Þ; . . . ; rðtmÞÞ (21)

~n5Qkðnðt1Þ; . . . ; nðtmÞÞ (22)

where Qk indicates computing the kth quantile of the arguments which can be chosen based on the appli-
cation. For example, choosing k 5 0.5 would represent the median behavior of each nonstationary GEV
parameter.
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3. Application

In the Intermountain West, melting snowpack is the primary source of spring flood events at many high-
elevation watersheds (Hamlet & Lettenmaier, 2007). However, frequency statistics of snow depth are not
always utilized in dam safety flood frequency analyses, even in watersheds where annual maximum stream-
flow events are controlled by snowmelt. In this study, we demonstrate an application of the general multi-
variate, nonstationary frequency analysis presented in the previos section using annual maximum snow
water equivalent (SWE), reservoir inflow, and water surface elevation (WSE) for the Taylor Park watershed
and Taylor Park dam, Colorado, USA (Figure 1).

3.1. Data
Daily SWE observations were obtained from sites in the Global Historical Climatology Network (Menne et al.,
2012) that are located within 320 km of the Taylor Park dam. Daily water surface elevation and naturalized
inflow data at the Taylor Park reservoir were downloaded from the Bureau of Reclamation’s Upper Colorado
Region webpage at http://www.usbr.gov/rsvrWater/faces/rvrOSMP.xhtml. We required SWE stations have a
minimum of 85% data coverage during the cool-season (October–July) for a minimum of 9 years in an effort
to retain stations with sufficient wintertime observations. In addition, for a SWE station to be included, the
annual maximum SWE time series had to be significantly correlated (at the 95% confidence level) with the
annual maximum time series of inflow to Taylor Park reservoir. A regional average of peak SWE was used as
an indicator of regional snow availability.

Our analysis is restricted to water years from 1981 to 2015 based on the availability of snow data. Annual
maximum daily SWE, water surface elevation, and calculated inflow were computed for each water year.

3.2. Model Structure for Taylor Park Watershed
In this section, we give the structure of the model for the Taylor Park application, which is a special case of
the model presented in section 2.1 wherein we can explicitly represent nonlinear dependence between
variables.

Figure 1. Outline of the Taylor Park watershed (660 km2; black line) located in Colorado, USA, with National Hydrologic
Database stream locations (blue lines). Taylor Park dam is indicated by the brown square.
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Let y(t) represent peak SWE, z(t) represent peak flow, and h(t) represent peak reservoir elevation. The model
structure for these three variables is

ðyðtÞ; zðtÞ; hðtÞÞ � CgðR; flyðtÞ; ry; ny; lzðtÞ; rz; nz; lhðtÞ; rh; nhgÞ (23)

yðtÞ � GEVðlyðtÞ; ry ; nyÞ (24)

zðtÞ � GEVðlzðtÞ; rz; nzÞ (25)

hðtÞ � GEVðlhðtÞ; rh; nhÞ (26)

lyðtÞ5ly01xyðtÞT by (27)

lzðtÞ5lz01xzðtÞT bz (28)

lhðtÞ5
a

11bc2lyðtÞ
(29)

where xyðtÞT and xzðtÞT are vectors of climate covariates for y(t) and z(t), respectively, ly0 and lz0 are vari-
able specific intercept terms, and by and bz are vectors of latent regression coefficients. In equation (29), we
introduce a hierarchical nonlinear relationship between flow and reservoir elevation motivated by the non-
linear elevation relationships in Figure 2, right and middle, with parameter a controlling the maximum res-
ervoir elevation and b and c controlling the exact shape of the dependence relationship. Equation (29)
demonstrates how we capture the nonlinear dependence between variables when it is supported by the
data. For simplicity, we do not introduce time dependence for the scale and location parameters though
this could be incorporated in a similar manner as the location parameter. In terms of the general model
notation in section 2.2, h5½ly0;by ;ry; ny ;lz0;bz; rz ; nz ; a; b; c� and X5½xyðtÞT ; xzðtÞT �mt51.

The copula dependence matrix is

R5

1 myz myh

myz 1 mzh

myh mzh 1

2
664

3
775 (30)

where mij represents the dependence (correlation) between variable i and j.

3.3. Covariates
We used indicies of the El Ni~no Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the
Atlantic Multidecadal Oscillation (AMO) as covariates. We obtained values of the multivariate ENSO index
(MEI; Wolter & Timlin, 1998, 1993) from http://www.esrl.noaa.gov/psd/enso/mei/. PDO values (Zhang et al.,
1997) were obtained from http://research.jisao.washington.edu/pdo/. AMO values (Enfield et al., 2001) were
obtained from http://www.esrl.noaa.gov/psd/data/timeseries/AMO/.

Figure 2. Pairwise scatterplots showing the dependence between peak SWE, peak flow, and peak elevation for Taylor Park dam.
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Peak SWE is expected to depend on winter values of each index so we used winter (December, January,
and February; DJF) average values for covariates. Peak flow is expected to depend partially on snow (which
is captured by the copula) and on spring values of each climate index, so we used spring (March, April, and
May; MAM) average values as covariates. The covariates vectors at time t are

xyðtÞT 5½1; t;MEIwðtÞ; PDOwðtÞ;AMOwðtÞ� (31)

xzðtÞT 5½1; t;MEIsðtÞ; PDOsðtÞ;AMOsðtÞ� (32)

where a w subscript denotes a winter average index and an s subscript denotes a spring average index.

3.4. Adequacy of the Gaussian Copula
The Gaussian copula is a flexible tool for modeling multivariate distributions with prescribed marginal distri-
butions (Renard & Lang, 2007). Despite its flexibility, the Gaussian copula may not be appropriate for a given
data set, that is, the data may not be multivariate normally distributed after transformation using /21ðFiðyiÞÞ
where /21 is the inverse cumulative standard normal distribution function and Fi is the GEV distribution func-
tion for variable yi. To test multivariate normality of the the data, we ran three tests, (1) Henze-Zirkler’s (Henze
& Zirkler, 1990), (2) Mardia’s (Mardia, 1970), and (3) Royston’s (Royston, 1982) multivariate normality test using
marginal transformations based on the MLE GEV fits. The p-values for the three tests were 0.56, 0.73, and 0.80,
respectively, all of which indicated the transformed data follow a multivariate normal distribution.

The Gaussian copula should be considered a practical tool for modeling multivariate extremes. However, its
lack of asymptotic dependence may lead to underestimation of low probability events when used to
extrapolate with data that exhibit tail dependence (Renard & Lang, 2007). Renard and Lang (2007) suggest
that the Gaussian copula is most useful in the observations range. In the results section, we show quantile
curves extrapolated beyond the range of the data for the purposes of comparing uncertainty estimates.

3.5. Model Fitting
The model was fit using a Monte Carlo Markov Chain (MCMC) procedure, specifically, a univariate slice sam-
pler (Neal, 2003) within a Gibbs sampler. In this scheme, slice sampling is applied to sample from the condi-
tional distribution of each parameter given all other parameters. We ran three chains of length 100,000,
discarding the first 50,000 iterations as burn-in and retaining only every 10 samples afterward, resulting in
15,000 posterior samples. To assess convergence, the R̂ statistic (Gelman & Rubin, 1992) was computed for
each parameter, ensuring that the value was less than 1.1.

3.6. Model Comparison
We compare four related models to highlight the advantages of conducting a multivariate frequency analy-
sis. The four models are as follows:

1. MLE S. A univariate stationary GEV distribution is fit independently to each variable using MLE.
2. MLE NS. A univariate nonstationary GEV distribution is fit to each variable using MLE where the mean is

allowed to vary over time according to linear trend and climate covariates.
3. Bayes Ind. A univariate nonstationary GEV distribution is fit to each variable using MCMC where the mean

is allowed to vary over time according to linear trend and climate covariates.
4. Bayes Joint. A multivariate Gaussian elliptical copula with nonstationary GEV marginals is fit to all varia-

bles simultaneously.

Uncertainty for the Bayesian methods is estimated naturally as part of the sampling procedure. To estimate
uncertainty for the MLE method, we used the Hessian matrix evaluated at the posterior mode of the optimal
parameter set, obtained from the maximum likelihood optimizer. From this matrix, we can estimate the
covariance matrix of the parameters. Using this covariance matrix, we draw samples of parameters from a
multivariate normal distribution (which is assumed by MLE). Each parameter sample drawn from the MVN
(which determines a unique GEV distribution) was used to compute a return level shown in the paper.

4. Results

Figure 3 shows the nonstationary return levels for the 100 year return period from the Bayesian-
independent model (left column), the Bayesian joint model (middle column), and the MLE-independent
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model for the three variables—reservoir elevation (top row), peak flow (middle row), and peak SWE (bottom
row). The whiskers show the 90% credible intervals, the boxes the interquartile range, and the horizontal
lines inside the boxes, the median. The reduction in uncertainty in the joint model compared to the inde-
pendent models is apparent in all variables. Although all models use the same climate covariates, the MLE-
independent model is less sensitive to the climate covariates. Both Bayesian models show similar trends but
with increased uncertainty in the independent case. A downward linear trend is apparent in all variables
and models. The top of the dam is 2848 m and the MLE-independent model consistently estimates higher
reservoir water levels for the 100 year return (top right figure), which seems unrealistic, compared to the
other two models. This is consistent with the model’s insensitivity to climate covariates. In Figure 3, the joint
model demonstrates increased year to year variability as compared to the MLE model. This is a distinct ben-
efit of the joint model, by lending strength across variables the model is more flexible in its ability to cap-
ture year to year changes in the large-scale climate system, brought in through the covariates.

To compare the uncertainty estimates of all models, stationary return levels were computed from the non-
stationary models using equation (19). That is, the fiftieth percentile of the nonstationary location parameter
estimates were computed (k 5 0.50) and used to compute stationary return levels for a range of return peri-
ods (1–1,000 year). Figure 4 shows the width of the 90% credible intervals for return levels plotted for a
range of return periods. Smaller values of the width indicate lower uncertainty. The Bayesian joint model

Figure 3. Nonstationary 100 year return levels from (left column) the independent Bayesian model, (middle column) the
joint Bayesian model, and (right column) the independent MLE model. Reservoir elevation is shown in the top row, peak
flow in the middle row, and peak SWE in the bottom row.
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produces lower uncertainty intervals for reservoir elevation flow, and snow depth compared to either the
Bayesian-independent model or the MLE-independent model.

Uncertainty reduction is also apparent when inspecting posterior distributions of the parameters in com-
mon between the joint and independent Bayesian models (Figure 5). Posterior distributions for the joint
model are less diffuse and in some cases demonstrate substantially different modes. This reduction of

Figure 4. Width of the 90% credible intervals (CI) of return levels for a range of return periods highlighting the reduction
of uncertainty by conducting a joint frequency analysis.

Figure 5. Posterior distributions of parameters in common between the joint and independent Bayesian models.
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uncertainty in the posterior distributions is directly responsible for the reduction of uncertainty in the return
level estimates.

The simulated model dependence structure between the variables using the Gaussian copula and without is
compared with the observations (Figure 6, bottom). It can be seen that the copula captures the structure of
the pairwise dependence better (Figure 6, bottom) as compared to the simulations without the copula (Figure
6, top). This property is important for simulating extremes while maintaining multivariate dependence.

5. Conclusion and Discussion

In this study, we presented a Bayesian hierarchical framework for modeling multivariate nonstationary fre-
quency for hydrologic variables. The general framework assumes the marginal distribution of each variable
follows a generalized extreme value (GEV) distribution, where the distribution parameters can vary in time
as a function of covariates and of other model parameters. Multivariate dependence between variables is
captured using a Gaussian elliptical copula.

We applied this framework to conduct a joint frequency analysis of peak snow water equivalent, peak
inflow, and peak reservoir elevation for Taylor Park reservoir, Colorado, USA. This application incorporated
large-scale climate covariates and a nonlinear relationship between flow and reservoir elevation. We found
that the Bayesian approach provided robust estimation of uncertainties of the return levels and further-
more, use of the copula decreased uncertainty in return level estimates and captured the multivariate
dependence between these three variables with high fidelity to the observed data.

The proposed Bayesian multivariate nonstationary framework has several benefits when compared to sta-
tionary, independent, and non-Bayesian versions:

1. Reduction of uncertainty. By incorporating multivariate dependence between variables, overall uncer-
tainty was reduced.

2. Variable dependence. Linear dependence relationships between variables can be captured by using the
copula.

3. Climate covariates. Covariates representing large-scale climate influences can be included to capture
decadal and multidecadal climate oscillations.

4. Hierarchical dependence. Nonlinear dependence between variables (such as with flow and reservoir eleva-
tion) can be captured by incorporating nonlinear relationships between model parameters.

Figure 6. Pairwise dependence structure simulated (top row) without the copula and (bottom row) with the copula.
Observations are shown as black points.
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The Gaussian copula is a flexible tool for modeling multivariate dependence between variables but may not
always be appropriate in every application. For example, Renard and Lang (2007) give an example using
peak flow and peak volume data from the Ubaye River at Barcelonette, France—wherein, peak flows are
generated by either snowmelt or heavy rainfall and capturing this relationship with a single dependence
parameter leads to poor results. It is therefore important to test for multivariate normality of a data set
before a multivariate frequency analysis is conducted. The Gaussian copula also assumes asymptotic inde-
pendence; in applications where tail dependence is present, extrapolating using the Gaussian copula may
lead to underestimation of risk.

In the application we have presented, the scale and shape parameters were assumed to be stationary for
simplicity. However, this assumption can be easily relaxed by adding covariates for these GEV parameters as
well. While the proposed framework is focused on nonstationary analysis of three variables, with minimal
effort this framework can be modified to include a spatial component to model multivariate extremes at
several locations—such as on a river network, something we plan to investigate further.
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